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INTRODUCTION

“Supercomputers are power constrained”

• Power budget for Los Alamos county = 66 MW
• Power budget for Trinity supercomputer alone = 15 MW

• Exceeding power budget Î Brownouts in Los Alamos
– Installing and starting ASCI White believed to play a part in the rolling 

California brownouts in 2001



INTRODUCTION

“Supercomputers are energy constrained”

• 1 MW power consumption Æ1 million dollars per year
– Operating cost of supercomputers comparable to the 

acquisition cost
• The gap expected to narrow down in the future



WHAT DOES IT HAVE TO DO WITH THE
VISUALIZATION TEAM?



POWER/ENERGY CHALLENGE

• Energy consumed for moving a bit increases as we move 
down the memory hierarchy
– Off-chip transfers costs nearly 100 times as much energy as on-

chip transfers

Image source: J.Shalf et al., “Exascale Computing Technology Challenges”, VECPAR 2010



TRADITIONAL “POST-PROCESSING” 
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SOLUTION: “IN-SITU” VISUALIZATION

• In-situ visualization: perform visualization alongside the 
simulation
– That is, create an image representation of data at end of each 

iteration directly instead of writing raw data to the disk
– The image (reduced size representation) may be written to 

the disk
– May involve additional sampling strategies (spatial, temporal, 

etc.)
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GOAL

“Study the performance, power, and energy trade-offs 
among traditional post-processing, modern post-processing, 

and in-situ visualization pipelines”

• Detailed sub-component level power measurements 
within a node to gain detailed insights
– i.e., measure power consumption of CPU, memory, and disk

• Measurements at scale to understand problems unique to 
big supercomputers
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APPLICATION

End goal: Identify eddies in the ocean

MPAS Ocean Simulation



DATA COLLECTION

Full-system power 
provided by real 

power meter

Memory and processor 
power provided by 

validated power model

Power readings logged 
every one second

Disk power consumption for 
micro-benchmarks estimated 
as Wattsup minus RAPL



DISK POWER MODEL

• I/O statistics collected from iostat
• Number of I/O operations and the amount of data written 

affects power consumption of the disk



PIPELINES STUDIED
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Post-processing

In-situ

Traditional Post-Processing:   Post-processing 
without any sampling
Modern Post-Processing: Post-processing with 
temporal sampling (write output every few iterations 
– here every 24 itereations)
In-situ: Produce images on the fly and do so only 
every few iterations



HARDWARE PLATFORM

Hardware configuration



OUTLINE

• Introduction
• Objective
• Methodology
• Results
• Conclusion and Future Work



RESULTS: SINGLE-NODE ENERGY COMPARISON

• In-situ consumes 4% less energy than 
modern post-processing

• Compared to traditional post-
processing, both pipelines consume 
93% lower energy
• Traditional post-processing no longer 

accepted as baseline
• Storage limitations won’t let it happen

• True baseline somewhere between 
traditional and modern post-
processing
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POWER/ENERGY CHALLENGE
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Image source: J.Shalf et al., “Exascale Computing Technology Challenges”, VECPAR 2010



RESULTS: SINGLE-NODE PERFORMANCE COMPARISON

• In-situ consumes 7% lower execution 
time than modern post-processing
• Reduced I/O wait time

• Difference will be significant for a HPC 
system
• Details later



RESULTS: SINGLE-NODE POWER COMPARISON

• In-situ consumes 3% more power than 
modern post-processing
• Difficult trade-off choice

• Might not be the same for a 
supercomputer
• Details later



RESULTS: SINGLE-NODE STORAGE REQUIREMENTS

• ~97.5% lower storage requirement for 
the in-situ pipeline
• Implies smaller storage cluster
• Implies lower power consumption 



REDISTRIBUTING STORAGE POWER TO
COMPUTE NODES

• Assuming reduced storage nodes 
results in 10% of total power 
redirected to computer nodes
• Performance improves by up to 

6% for MPAS-O
• Data from power capping 

experiments with RAPL



EXPECTATIONS FOR A SUPERCOMPUTER

• Increased I/O wait time
– Storage separated from compute by network
– Longer execution time and corresponding increase in energy

• Additional energy consumption from data movement 
through the network
– No data transfer via network cables in single-node

• Power/energy overhead for storage higher
– Separate cluster for storage Æ additional CPUs, memory, cooling 

etc. 
– Storage sub-system shared with compute sub-system in single-node



RESULTS AT SCALE: HARDWARE PLATFORM

• Caddy supercomputer with a dedicated Lustre file system 
used for profiling

• Compute nodes
– 64 nodes out of 150 nodes used in these experiments

• Each node contains 2x Intel Xeon E5-2670 and 64 GB of RAM

– Nominal power consumption
• 6000 W (idle) to 20000 W (workload such as MPAS)

• Storage nodes
– 5 nodes configured as 1 master + 2 MDS + 2 OSS
– 1 RAID storage per MDS and OSS
– Nominal power consumption

• 2500W (idle) to 2800W (active)



RESULTS AT SCALE: ENERGY COMPARISON

Real measurements on Caddy Partial measurement on Caddy and 
extrapolation from spec sheets

19% ↓
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FINDINGS

• Most energy savings come from reducing system idling 
(i.e., from reduced I/O wait time)

• Further savings possible if we can reduced size of the 
storage nodes



CONCLUSION

• In-situ visualization offers the following advantages:
• Reduced energy consumption (by reducing system 

idling or I/O wait time)
• Reduced power (by using fewer storage nodes)
• Improved performance (by reducing I/O wait time 

and by making more power available for compute 
nodes)



FUTURE DIRECTIONS

• Enhancing HPC systems
– Flash buffers and SSDs can reduce I/O wait time

• Downside: Introducing more components can increase power 
consumption

• HPC system design changes
– Bringing storage nodes and compute nodes together

• Similar to Memory in Processor or Processor in Memory concepts in 
the computer architecture community

• Runtime system changes
– Energy proportional computing and storage

• Putting compute nodes to sleep states during I/O
• Putting some storage nodes to deep sleep state when bandwidth and 

storage requirements are lower


